6.04.2008

what inspires you?


For some, a carefully crafted painting by Claude Monet is a subject of fascination, whether it serves to entrance, by the way light is captured with the delicacy and precision of each brush stroke. Or, it inspires, making the viewer yearn to put life to canvas in the same fashion that it was so many years ago.

Others are inspired by the steady hands of an experienced neurosurgeon, the skill of a high-speed precision air racing pilot, the intricacies of mind-blowingly complex confidence schemes, or by someone's ability to continuously burp the entire alphabet (okay, maybe not since 4th grade).

What inspires me? Apparently, the same thing that motivates Brian Greene, world famous physicist and author of The Elegant Universe, a book on String Theory which was also made into a PBS miniseries that he hosted.

On June 1, Dr. Greene wrote a letter to the New York Times about the importance of science in our lives, and how it should be (though, sadly isn't) valued in the same way that we value art, business, or language.

As Brian Greene states, we all start out our conscious lives as scientists... one of the most oft heard questions for any toddler's parents is "Why?" Why is wood fire yellow and stove fire blue? How do planes stay up in the sky? Why do bees and hornets and wasps all have black and yellow stripes?

I wonder how well a lot of parents can answer these questions, as many likely don't know the answers themselves. That's not to say they have no idea, but that the true meaning beneath a simple answer is likely lost on many people. In fact, the answers to these questions weren't really fully answered for me until I went to college and took classes in Chemistry, Physics, and Biology on my own volition.

How many of you had such memorable experiences in your high school science classes that you were driven to become lifelong scientists? I know I didn't. With the exception of an excellent and highly acclaimed high school physics teacher (Steve DeAngelis, whom I unfortunately had for only one semester of a year-long class), my high school Biology and Chemistry classes were hardly as interesting as Photography, Theater, or French (and perhaps I'm an exception when it comes to French). In fact, those basic science classes, learning about the periodic table or the organelles of a cell, turned me off of scientific pursuits. The world was much more interesting, it seemed, than the sciences could offer, especially when it came to fighting fires and chasing crooks.

After spending a few years in various forms of public service, I found myself back in school, ready for a change. My dream career had left me alternately bored and stressed out, and I needed to feed my brain some more. Moving to California, I enrolled at Cabrillo College, and started taking classes in Biology, Chemistry, and Physics.

It was here that my passion for science was ignited, quite literally, by my chemistry professor, Josh Blaustein. If you don't know him, Josh has a propensity for causing large explosions in small lecture halls, often followed by applause, if not a literally stunned silence. To this day, I remember a particular lab in that Chemistry class that involved burning various liquids containing metal ions to see what color they would be. Strontium was red, Copper was green and Potassium was a lovely shade of periwinkle. Question 1, answered. (It's also because of Josh that I know that liquid oxygen (boiling point -297 °F) is blue, and that, when poured on Corn Flakes and ignited, the combination could feasibly power a small rocket.)

Another inspiration is Joe McCullough, whose enthusiasm alone could wake up anyone in an 8AM Physics class (assuming he showed up on time). Joe can speak with the same aptitude and passion about the science behind the bowling ball-pendulum swinging perilously close to his face, the Van De Graff generator giving him frequent, painful electric shocks, and the calculations behind fluid forces as applied to an airplane wing (Question 2, answered), and he can lead informative discussions on the aforementioned String Theory.


The science that has won the majority of my fascination, however, and that to which I devote my academic pursuits, is Biology. John Carothers' knowledge base of obscure animal facts is simultaneously fascinating and humbling. Through his course in Animal Diversity and Evolutionary principles, I've learned amazing things about Hyena fetal development, why you shouldn't put a cone snail in your wet suit, and how Mullerian mimicry works for poisonous snakes of Central America (Question 3, answered). I've also developed the personal opinion that the octopus in evolutionary terms, is the most advanced animal on this planet (I didn't even tell you about the three hearts or the inverted structure of the polarity-sensing retina!).

These three professors have been an inspiration to me over the last two years, not because they know a lot or wrote fancy papers when they were grad students, but because they have spent the time since then refining their teaching techniques, figuring out the best way to get the majority of their students interested in the sciences. Whether it's designing a Rube Goldberg machine of fire to explode a balloon of oxygen propane in equal molar quantities, awarding prizes to those who can produce the most standing waves in a string, or singing obscure songs about interrelatedness and marrying one's grandmother to explain the benefits of sex, these guys have found a way to light a fire in the minds and hearts of their students and hopefully drive them on to bigger and better things.

For all the wonderful things that I've learned in the past two years, it's somewhat frustrating that it took me this long to realize how much I've been missing. This is what Brian Greene talks about in his June 1 letter. Entry level science, as it's currently taught, is less about the fascinating world that can be discovered and appreciated and more about memorizing the fundamentals, which are often quite boring. It's no wonder that so many students quickly lose interest if all they do is learn parts from a 1970 drawing of a cell or devote their homework to learning the Bohr model of the atom (which isn't even accurate, so who knows why they still teach it). If young people could be shown the most amazing, most intricate, and most beautiful parts of science first, Greene argues, then they might be more inclined to go back and say "how does that work?" In writing, it is said that the introduction should be something that captures the attention and draws the reader in. Why shouldn't science be the same way? To a novice science student, memorizing the Krebs cycle of the mitochondrion is nowhere near as fascinating an introduction as would be knowing that insects have, instead of lungs and capillaries, tiny air tubules that enter the sides of their bodies and go to each and every cell, ending right next to those same mitochondria.

Brian Greene, my aforementioned mentors and I agree that science is incredibly valuable, and should hold a place in the same high esteem as all other parts of life. I encourage you all to read his short letter, reconsider the education you tried not to sleep through in high school, and then do as my brother is and sign up for Scientific American.

You'll never know what might capture your attention.

Paddy

No comments: